72
Views
15
CrossRef citations to date
0
Altmetric
Articles

Solar energy performance analysis of basin-type solar still under the effect of vacuum pressure

, , ORCID Icon &
Pages 922-926 | Received 06 Dec 2017, Accepted 08 Jul 2018, Published online: 31 Jul 2018
 

ABSTRACT

This paper deals with a solar still for distilled water, using the heat of the sun to evaporate, cool and then collect the water. They are used in areas where drinking water is unavailable, so that clean water is obtained from dirty water or from plants by exposing them to sunlight; vacuum pressure is delivered to still-type solar. The reason for selecting vacuum pressure is that during the monsoon and cloudy days, solar intensity will not be high as it leads to evaporation at lower temperature saline water under the soar still. The basin area for the production of 5 litres per day of fresh water is determined as 1.44 m2and the solar still basin area of 1.44 m2 and 21.5° tilt angle are designed. Solar energy be may used full to alternate in electrical power and to purify water in future. Finally, the performance was analysed for the solar still with a vacuum pressure at 0.6 bar. The outcome of the theoretical analysis shows that adoption of 0.6 bar pressure inside the solar still improves the average performance by 30%. In order to overcome this problem, vacuum could be applied for the better performance of the solar still during the low solar intensity periods.

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.