74
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Entropy optimization in mixed convective boundary layer flow of CNTs Casson nanoliquid through a vertical cylinder moving with nonlinear velocity

ORCID Icon &
Pages 2569-2589 | Received 19 Dec 2022, Accepted 04 Apr 2023, Published online: 14 Sep 2023
 

Abstract

This article inspects entropy generation and mixed convection boundary layer flow of carbon nanotubes (CNTs) Casson nanoliquid via semi-infinite vertical cylinder which moves with nonlinear velocity in Darcy-Forchheimer porous medium. Appropriate similarity variables have been employed to convert the original partial differential equations into ordinary differential equations that have been solved using overlapping grid spectral quasilinearisation method (SQLM). Comparison of accuracy, convergence and stability between the two methods is made. Rate of entropy generated, flow fields and engineering quantities are discussed for different embedding parameters. It is revealed that single-wall CNTs are more efficacious to improve heat transport features than multi-wall CNTs. The fluid flow and thermal dispersion processes improve with consideration of curved surface, CNTs, non-Newtonian fluid and injection of the fluid. The curvature surface and suction of the fluid contribute towards growth of skin friction factor and rate of thermal transference. Entropy generated expands by accounting for viscous nature of the fluid, strong nonlinearity, suction, non-Newtonian fluid, convective boundary condition and CNTs. The study finds applications in various processes, which are massively impacted by heat transport enhancement and high porosity. Boundary layer flow and heat transfer analysis through cylinders are relevant to various metallurgical and engineering solicitations.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.