36
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Retrieval of atmospheric water vapour using a ground-based single-channel microwave radiometer

&
Pages 3821-3837 | Received 16 May 1997, Published online: 13 May 2010
 

Abstract

Estimates of the amount of atmospheric water vapour derived from algorithms for a ground-based single-channel (21.0 GHz) microwave radiometer have been investigated. Ten datasets covering 44 days were used to derive the methods and two other sets (in total 32 days) were used to assess the quality of these. It is shown how the rms estimation error can be reduced by recognizing the rapid variations in sky brightness temperatures during periods when cloud liquid is present. Data was either discarded, guided by the variability, or an adaptive Kalman filter was applied with different parameter values for different degrees of variability. The resulting estimates were compared to the estimates obtained from a dual-channel algorithm (21.0 and 31.4 GHz), which were used as reference. The amount of water vapour was represented as the ‘wet delay’, the excess radio path length due to the atmospheric water vapour. Applying the Kalman filter to the single-frequency estimates reduced the wet delay rms error from 20 mm to 9 and 14 mm for the two datasets. Further reduction of the rms error was achieved by the removal of data in periods with high variability; discarding about 40% of the data led to rms errors of 5 and 7 mm for the two datasets.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.