171
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Integrating imaging spectroscopy (445–2543 nm) and geographic information systems for post-disaster management: a case of hailstorm damage in Sydney

, , , &
Pages 2625-2639 | Received 07 Jan 2002, Accepted 21 Aug 2003, Published online: 13 May 2010
 

Abstract

This paper demonstrates a methodology for the analysis and integration of airborne hyperspectral sensor data (445–2543 nm) with GIS data in order to develop a vulnerability map which has the potential to assist in decision making during post-disaster emergency operations. Hailstorms pose a threat to people as well as property in Sydney, Australia. Emergency planning demands current, large-scale spatio-temporal information on urban areas that may be susceptible to hailstones. Several regions, dominated by less resistant roofing materials, have a higher vulnerability to hailstorm damage than others. Post-disaster operations must focus on allocating dynamic resources to these areas. Remote sensing data, particularly airborne hyperspectral sensor data, consist of spectral bands with narrow bandwidths, and have the potential to quantify and distinguish between urban features such as roofing materials and other man-made features. A spectral library of surface materials from urban areas was created by using a full range spectroradiometer. The image was atmospherically corrected using the empirical line method. A spectral angle mapper (SAM) method, which is an automated method for comparing image spectra to laboratory spectra, was used to develop a classification map that shows the distribution of roofing materials with different resistances to hailstones. Surface truthing yielded high percentage accuracy. Spatial overlay technique was performed in a GIS environment where several types of cartographic data such as special hazard locations, population density, data about less mobile people and the street network were overlaid on the classified geo-referenced hyperspectral image. The integrated database product, which merges high quality spectral information and cartographic GIS data, has vast potential to assist emergency organizations, city planners and decision makers in formulating plans and strategies for resource management.

Acknowledgments

The authors are grateful to Terry Cox (HyVista Corporation, Sydney) and the New South Wales Fire Brigades, Sydney for supporting this project.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.