4,309
Views
240
CrossRef citations to date
0
Altmetric
Original Articles

The relationship between land surface temperature and NDVI with remote sensing: application to Shanghai Landsat 7 ETM+ data

, , &
Pages 3205-3226 | Received 26 Feb 2005, Accepted 08 Aug 2005, Published online: 31 Jul 2007
 

Abstract

The relationship between land surface temperature (LST) and Normalized Difference Vegetation Index (NDVI) associated with urban land‐use type and land‐use pattern is discussed in the City of Shanghai, China using data collected by the Enhanced Thematic Mapper Plus (ETM+) and aerial photographic remote sensing system. There is an apparent correlation between LST and NDVI from the visual interpretation of LST and NDVI contrasts. Mean LST and NDVI values associated with different land‐use types are significantly different. Multiple comparisons of mean LST and NDVI values associated with pairings of each land‐use type are also shown to be significantly different. The result of a regressive analysis shows an inverse correlation relationship between LST and NDVI within all land‐use polygons, the same to each land‐use type, but correlation coefficients associated with land‐use types are different. An analysis on the relationship between LST, NDVI and Shannon Diversity Index (SHDI) shows a positive correlation between LST and SHDI and a negative correlation between NDVI and SHDI. According to the above results, LST, SHDI and NDVI can be considered to be three basic indices to study the urban ecological environment and to contribute to further validation of the applicability of relatively low cost, moderate spatial resolution satellite imagery in evaluating environmental impacts of urban land function zoning, then to examine the impact of urban land‐use on the urban environment in Shanghai City. This provides an effective tool in evaluating the environmental influences of zoning in urban ecosystems with remote sensing and geographical information systems.

Acknowledgement

The authors wish to thank the anonymous reviewers for their constructive comments and suggestions. Further acknowledgement goes to the National Natural Science Foundation, China for financial support (Grant No. 40171069).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.