232
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

A high‐performance approach for brightness temperature inversion

, , &
Pages 4733-4743 | Received 22 Aug 2006, Accepted 16 Jan 2007, Published online: 11 Aug 2010
 

Abstract

Brightness temperature inversion is one of the most essential tasks in satellite remote sensing data processing. Accurate calculation of brightness temperature is crucial for many remote sensing applications, such as land surface temperature retrieval, sea surface temperature retrieval, and active fire detection. Due to the huge amount of remote sensing data, performance is also very important for operational use. Major current approaches for brightness temperature inversion are iteration methods, Look‐Up‐Table (LUT) methods, and empirical formula methods. Some of these algorithms can invert brightness temperature efficiently with limited accuracy, while others can invert brightness temperature at high accuracy but have lower performance. It is desirable to develop an algorithm that can make the balance of accuracy and performance more flexible and can invert brightness temperature efficiently even at high accuracy. In this paper, we analyse the advantages and limitations of the current algorithms for brightness temperature inversion, and propose a new approach based on the high‐order approximation of the relationship between band‐averaged radiance and brightness temperature. Our approach has the advantages of high accuracy and flexibility. It can be vectorized easily to exploit the advanced features of current computing platforms and improve performance in operational data processing. For validation and analysis, we have applied this method to brightness temperature inversion of MODIS thermal infrared (TIR) measurements and compared with other algorithms for accuracy and performance. The results demonstrate that our approach can be used for operational data processing more flexibly and efficiently.

Acknowledgements

This work was funded by Northrop Grumman Space Technology (NGST). This research is a contribution to the AIRS‐MODIS‐VIIRS Band Mapping Project.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.