470
Views
53
CrossRef citations to date
0
Altmetric
Original Articles

Hyperspectral indices for detecting changes in canopy reflectance as a result of underground natural gas leakage

, , , , &
Pages 5987-6008 | Received 05 Aug 2006, Accepted 15 Jan 2008, Published online: 20 Sep 2008
 

Abstract

Natural gas leakage from underground pipelines is known to affect vegetation adversely, probably by displacement of the soil oxygen needed for respiration. This causes changes in plant and canopy reflectance, which may serve as indicators of gas leakage. In this study, a covariance analysis was performed between reflectance indices of maize (Zea mays) and wheat (Triticum aestivum) canopies and oxygen concentrations in a simulated natural gas leak. Twenty‐nine days after oxygen shortage occurred, the reflectance indices had the highest correlation with oxygen concentrations in the soil, for both species. The effect was consistent within species but the absolute values varied between the species. Normalization by adding a constant value to the control index of one species resulted in significant linear regression models for several indices. The indices with the highest regression coefficients were used to predict the oxygen concentration in the soil. This showed that the gas leakage caused reflectance changes up to 0.5 m from the source. As it could not be proven that oxygen shortage was the cause of the reflectance changes, further work is needed to study the side‐effects of gas leakage, such as bacterial oxygen depletion, on plant growth and reflectance.

Acknowledgements

We thank Matthew Beardsley for his help in the field and Dr David Rossiter for his advice on the statistical analysis. We acknowledge two anonymous reviewers for their valuable comments and suggestions.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.