227
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Plant growth monitoring and potential drought risk assessment by means of Earth observation data

, , , , &
Pages 4943-4960 | Received 15 Nov 2006, Accepted 05 Dec 2007, Published online: 04 Dec 2010
 

Abstract

The potential of hyperspectral imagery for the determination of drought risk zones, responsible for heterogeneous plant growth due to different soil compositions, was assessed at the field scale. The research was carried out in the Marchfeld region, an agricultural, flat area east of Vienna, Austria, during June 2005 by means of an airborne imaging spectrometer (HyMap). The inversion of a radiative transfer model by using a look‐up‐table (LUT) approach was performed to retrieve canopy parameters, indicators of plant growth, such as leaf area index (LAI), chlorophyll content and a soil reflectance factor (ALFA). To quantify ALFA with respect to its relationship to soil surface water content, the soil reflectance was measured at different levels of known soil water conditions. Finally, a cluster analysis was performed using the parameters estimated from the model inversion to explain plant growth variability, quantified by means of measured yield. The results were compared with a simple Normalized Differenced Vegetation Index (NDVI) approach to evaluate the contribution of hyperspectral data to vegetation monitoring. Areas characterizing different levels of drought risk could be determined by both methods with a similar performance.

Acknowledgements

This research study received financial support from the Fonds zur Förderung der wissenschaftlichen Forschung (FWF, Austria; grant no. P17647‐N04). We thank the DROSMON team for acquiring field data and performing the geometric correction of the HyMap data.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.