312
Views
22
CrossRef citations to date
0
Altmetric
Original Articles

Retrieval of sub-pixel snow cover information in the Himalayan region using medium and coarse resolution remote sensing data

, , , &
Pages 4707-4731 | Received 16 Feb 2007, Accepted 15 Jan 2008, Published online: 07 Sep 2009
 

Abstract

Numerous constrained and unconstrained algorithms have been used to retrieve sub-pixel snow-cover information quantitatively using medium and coarse spatial resolution multispectral images from the Advanced Wide Field Sensor (AWiFS) and Moderate Resolution Imaging Spectrometer (MODIS) sensors over the Himalayan region. Both the methods give slow convergence rates and inaccurate estimation of sub-pixel components analysed using root mean square (RMS) error and image deviation. Multiplicative iterative algorithms such as the Expectation Maximization Maximum Likelihood Method (EMML) and the Image Space Reconstruction Algorithm (ISRA) based on the minimization of least squares and Kullback–Leibler distances have been attempted to compute the endmembers' abundances in unmixing of satellite data. In this paper we discuss the eigenvalues of minimum noise fraction (MNF) transformation bands, data noise removal using MNF transformation and selection of pure endmembers using satellite images. The normalized difference snow index (NDSI) is also estimated using field spectral reflectance results and satellite images in green and shortwave infrared (SWIR) wavelength regions in order to carry out a comparative analysis for its variations with sub-pixel snow cover fractions. The present analysis shows the advantage of iterative over direct (constrained and unconstrained) methods; constraints are easily handled and allow better regularization of the solution for the ill-conditioned cases. Iterative methods are found to be faster compared to those of direct methods and can be used operationally for all resolution data for accurate estimation of sub-pixel snow cover.

Acknowledgments

The authors would like to thank Dr R.N. Sarwade, Director, Snow and Avalanche Study Establishment, Chandigarh for granting permission to write this paper and his keen interest in the work. Thanks are also due to scientific and technical officers from the remote sensing group for fruitful discussion during the progress of the work. The authors are grateful to the anonymous referees for their useful comments and suggestions for improving an earlier version of the paper.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.