962
Views
46
CrossRef citations to date
0
Altmetric
Articles

A practical DOS model-based atmospheric correction algorithm

, &
Pages 2837-2852 | Received 08 May 2008, Published online: 19 Jul 2010
 

Abstract

Atmospheric correction is of great importance in quantitative remote sensing studies. However, many of the atmospheric correction algorithms proposed in the literature are not easily applicable in real cases. In order to develop a practical atmospheric correction algorithm, Moderate Resolution Imaging Spectroradiometer (MODIS) imagery is employed to obtain aerosol optical depth and the total atmospheric water vapour content, which are used to compute the transmittances in a dark object subtraction (DOS) model. An improved DOS atmospheric correction method combining MODIS imagery with the conventional DOS technique is proposed. A Landsat 7 Enhanced Thematic Mapper Plus (ETM+) image acquired on 21 October 2001 in Wuyi mountain, south-eastern China, and a CBERS 02 CCD image acquired on 24 August 2005 in Dunhuang, north-western China, were atmospherically corrected with this new approach. Various tests are performed, from spectral signature analysis, to vegetation index spatial profile and image information content comparisons, and by direct comparison with ground-measured reflectances, to evaluate the performance of the improved DOS model. The evaluation shows it can generally achieve a good atmospheric correction result.

Acknowledgments

This work was funded by the Ministry of Science and Technology of the People’s Republic of China under grant number 2005DFA20420. The authors are grateful to the China Center for Resources satellite data and applications for providing CBERS 02 CCD image and the ground-measured reflectance data. The authors would like to thank the two anonymous reviewers for their careful reading and helpful comments on an earlier draft of this manuscript.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.