485
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Optimizing predictive models for leaf chlorophyll concentration based on continuous wavelet analysis of hyperspectral data

&
Pages 9375-9396 | Received 10 Sep 2009, Accepted 01 Feb 2010, Published online: 02 Aug 2011
 

Abstract

Recent studies have demonstrated that the decomposition of hyperspectral data using wavelet analysis is able to generate wavelet coefficients that can be used for estimating leaf chlorophyll (chl) concentrations. However, there is considerable scope for refining such techniques and this study addresses this issue by identifying the optimal spectral domain for use in constructing predictive models. Leaf reflectance spectra were simulated with the PROSPECT model (a model of leaf optical properties spectra) using randomly selected values for the input parameters. From reflectance and first derivative spectra different spectral wavelength domains were extracted, ranging from 400–450 to 400–2500 nm, using increments of 50 nm for the upper wavelength limit. Using the data for each wavelength domain, continuous wavelet decomposition was applied using 53 different wavelets, in turn. The resulting wavelet coefficients, from scales 1 to 128, were used as independent factors to construct predictive models for leaf chl concentration. Wavelet coefficients (at a specific scale generated by a given wavelet) in the chl absorption region remain constant when using spectral wavelength domains of 400–900 nm and broader, but narrower domains cause variability in the coefficients. Lower scale wavelet coefficients (scales 1–32) contain little information on chl concentration and their predictive performance does not vary with the spectral wavelength domain used. The higher scale wavelet coefficients (scales 64 and 128) can capture information on chl concentration, and predictive capability increases rapidly when the spectral wavelength domains vary from 400–700 to 400–900 nm but it can decrease or fluctuate for broader domains. In terms of accuracy and computational efficiency, models derived from the spectral wavelength domain 400–900 nm which use wavelet coefficients from scale 64 are optimal and a range of wavelet functions are suitable for performing the decomposition. The importance of optimizing the spectral wavelength domain highlighted by these findings has broader significance for the use of wavelet decomposition of hyperspectral data in quantifying other vegetation biochemicals and in other remote sensing applications.

Acknowledgement

This research was supported by Zhejiang Association for International Exchange of Personnel and the National Natural Science Foundation of China project (NSFC-40571115, 40871158).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.