447
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Variational retrieval of leaf area index from MODIS time series data: examples from the Heihe river basin, north-west China

, , , , , , , & show all
Pages 730-745 | Published online: 18 Nov 2011
 

Abstract

Leaf area index (LAI) products retrieved from observations acquired on one occasion have obvious discontinuity in the time series owing to cloud coverage and other factors, and the accuracy may not meet the needs of many applications. Effectively utilizing data assimilation techniques to retrieve biophysical parameters from the time series of remote-sensing data has attracted special interest. The data assimilation technique is based on a reasonable consideration of dynamic change rules of biophysical parameters and time series observational quantities, thereby improving the quality of retrieved profiles. In this article, a variational assimilation procedure for retrieving LAI from the time series of remote-sensing data is developed. The procedure is based on the formulation of an objective function. A dynamic model is constructed based on the climatology from multi-year Moderate Resolution Imaging Spectroradiometer (MODIS) LAI data to evolve LAI in time, and a radiative transfer model is coupled with the dynamic model to simulate a time series of surface reflectances. A shuffled complex evolution method (developed at the University of Arizona; SCE-UA) optimization algorithm is then used to minimize the objective function and estimate the dynamic model states and the parameters of the coupled model from the MODIS reflectance data with a higher quality in a given time window. The variational assimilation method is applied to the MODIS surface reflectance data for the whole of 2008 at the Heihe river basin to produce regional LAI mapping results. The ground LAI data measured in situ are used to develop algorithms to estimate LAI from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) surface reflectance, and ASTER LAI maps are produced for each ASTER scene using the algorithms developed. Then the ASTER LAI maps are aggregated to compare with the new LAI products. It is found that the variational assimilation method is able to produce temporal continuous LAI products and that accuracy has been improved over the MODIS LAI standard product.

Acknowledgement

This research was supported by the Chinese 973 Programme under grant 2007CB714407, by NASA under grant NNX09AN36G, the National Natural Science Foundation of China under grants 41171264, 40871163 and 40701102, the National Science and Technology Support Project under grant 2008BAC34B03 and the EU Seventh Framework Programme (CEOP-AEGIS).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.