349
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Validation of satellite-derived tropical cyclone heat potential with in situ observations in the North Indian Ocean

, , , , , , & show all
Pages 615-620 | Received 12 Aug 2011, Accepted 08 Nov 2011, Published online: 04 Jan 2012
 

Abstract

Tropical cyclone heat potential (TCHP) is an important ocean parameter influencing cyclones and hurricanes. The best approach for computing TCHP is to use in situ measurements. However, since in situ data have both spatial and temporal limitations, there is a need for satellite-based estimations. One potential solution is to use sea surface height anomalies (SSHAs) from altimeter observations. However, any estimation derived from satellite measurements requires extensive regional validation. In this letter, we compare satellite-derived TCHP values with those estimated using in situ measurements of the North Indian Ocean collected during 1993–2009. All the available measurements collected from the conductivity temperature and depth (CTD) profiler, expendable CTD profiler (XCTD), bathythermograph (BT), expendable BT (XBT) and Argo floats were used to estimate in situ derived TCHP values. TCHP estimations from satellite observations and in situ measurements are well correlated, with coefficient of determination R 2 of 0.65 (0.76) and a scatter index (SI) of 0.33 (0.25) on a daily (monthly) basis for the North Indian Ocean.

Acknowledgements

A part of this analysis was carried out under the Technology Development Project of the National Remote Sensing Centre (NRSC), Hyderabad. The authors acknowledge the encouragement, support and data provided at their respective centres. The comments by the anonymous referee and the editor Dr Tim Warner have improved the quality of the article significantly.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.