3,389
Views
82
CrossRef citations to date
0
Altmetric
Original Articles

Land surface temperature from multiple geostationary satellites

, , , , &
Pages 3051-3068 | Received 13 Jan 2011, Accepted 25 Oct 2011, Published online: 30 Oct 2012
 

Abstract

This article provides a description of a land surface temperature (LST) data set generated (and provided in near-real-time or offline) based on infrared data from sensors onboard different geostationary (GEO) satellites: Meteosat Second Generation (MSG), Geostationary Operational Environmental Satellite (GOES), and Multifunction Transport Satellite (MTSAT). Given the different characteristics of the imagers onboard each GEO platform, different algorithmic methodologies for the retrieval of LST are presented and implemented – namely the Generalized Split-Window (GSW) algorithm and the Dual Algorithm (DA) in its mono- and dual-channel forms – using semi-empirical functions that relate LST to top-of-atmosphere brightness temperatures in infrared window channels. The assumptions and physics underlying each methodology, as well as the uncertainties of LST estimates, are discussed. The formulations are trained using a data set of radiative transfer simulations for a wide range of atmospheric and surface conditions. The performance of each algorithm is then assessed by comparing its output against an independent set of simulations, suggesting that product uncertainties range from 2°C (for GSW and the two-channel algorithm) to 4°C (for the one-channel algorithm). Finally, LST retrievals from different GEO satellites are merged into a single field. In overlapping areas, the average discrepancies between LST products derived from GOES and from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard MSG are within 1°C during night-time, but may reach 3°C during daytime. Over those areas, the merged LST field is obtained as a weighted average of available LST retrievals for the same time slot, taking into account the respective error bar.

Acknowledgements

This work has been developed within the framework of Geoland-2, the pilot project for the Global Monitoring for the Environment and Security (GMES) Land Monitoring Core Service; Geoland-2 is funded by the European Community's Seventh Framework Programme (FP7/2007–2013) under grant agreement 218795. Instituto Dom Luiz, Pest-OE/CTE/LA0019/2011-IDL, also supported part of this work. LST products derived from SEVIRI/MSG are provided by the EUMETSAT Satellite Application Facility on Land Surface Analysis (LSA SAF).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.