335
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Monitoring soybean growth using L-, C-, and X-band scatterometer data

, , , &
Pages 4069-4082 | Received 07 Feb 2012, Accepted 11 Jan 2013, Published online: 04 Mar 2013
 

Abstract

A ground-based fully polarimetric scatterometer operating at multiple frequencies was used to continuously monitor soybean growth over the course of a growing season. Polarimetric backscatter data at L-, C-, and X-bands were acquired every 10 min. We analysed the relationships between L-, C-, and X-band signatures, and biophysical measurements over the entire soybean growth period. Temporal changes in backscattering coefficients for all bands followed the patterns observed in the soybean growth measurements (leaf area index (LAI) and vegetation water content (VWC)). The difference between the backscattering coefficients for horizontally transmitted horizontally received (HH) and vertically transmitted vertically received (VV) polarizations at the L-band was apparent after the R2 stage (DOY 224) due to the double-bounce scattering effect. Results indicated that L-, C-, and X-band radar backscatter data can be used to detect different soybean growth stages. The results of correlation analyses between the backscattering coefficient for specific bands/polarizations and soybean growth data showed that L-band HH-polarization had the highest correlation with the vegetation parameters LAI (r = 0.98) and VWC (r = 0.97). Prediction equations for estimation of soybean growth parameters from the L-HH were developed. The results indicated that L-HH could be used for estimating the vegetation biophysical parameters considered here with high accuracy. These results provide a basis for developing a method to retrieve crop biophysical properties and guidance on the optimum microwave frequency and polarization necessary to monitor crop conditions. The results are directly applicable to systems such as the proposed NASA Soil Moisture Active Passive (SMAP) satellite.

Acknowledgements

This study was funded by the research project (Project No. PJ009367012013) of National Academy of Agricultural Science, Rural Development Administration, Republic of Korea.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.