209
Views
13
CrossRef citations to date
0
Altmetric
Articles

A new methodology to estimate the discrete-return point density on airborne lidar surveys

&
Pages 1496-1510 | Received 16 Aug 2013, Accepted 08 Dec 2013, Published online: 14 Feb 2014
 

Abstract

The distribution of the discrete-return point density in airborne lidar flights obtained from an oscillating mirror laser scanner is analysed and alternative formulations to determine its value are presented. The point density in a lidar swath varies and can best be fitted with a potential function. This study confirms that calculating the overall point density with traditional statistical parameters yields biased results owing to the abnormally high densities of the swath boundaries. New formulas for calculating the representative mean are proposed: a weighted arithmetic mean (WAM) based on a potential function; geometric mean (GM); and harmonic mean (HM). All three means give more weight to the central sectors across the strip and less to the boundary sectors where extreme data redundancy exists. The WAM based on a potential function yields equivalent estimates as the HM; the GM yields slightly higher estimates. The results obtained improve the mean estimation and, more importantly, allow users to estimate better the mean point density on airborne lidar surveys, which are usually overestimated approximately by 15%.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.