243
Views
7
CrossRef citations to date
0
Altmetric
Articles

Hyperspectral data spectrum and texture band selection based on the subspace-rough set method

, , , , , & show all
Pages 2113-2128 | Received 24 Apr 2014, Accepted 28 Jan 2015, Published online: 20 Apr 2015
 

Abstract

In order to improve the utilization rate of spectroscopic data and texture information, this study proposes a method for optimal selection of spectrum and texture features based on automatic subspace division and rough set theory. This method takes advantage of rough set reduct ideology in order to realize the reduction of different types of ground object spectral features on the basis of the conventional subspace division method. In using this method, the primary spectral band based on spectral information can be determined. Then, the grey-level co-occurrence matrix method can be used to calculate the texture information of the primary spectral band and determine the reduction and optimization in order to obtain the final band based on the spectrum and texture information. Verification of this method is made by using CASI data of Heihe Region, China, and AVIRIS data of the Indiana Region, USA, and also using Support Vector Machine (SVM) classification of the original spectral, primary spectral, and final bands. The results indicate the following. (1) The method for optimal selection of the critical spectral band and texture band, based on the rough set theory, can efficiently improve the classification accuracy of high-spatial resolution remote-sensing images. However, the effects for the low-spatial resolution images are minimal. (2) For high-spatial-resolution remote-sensing images, such as roads, trenches, buildings, and other types of object with obvious textural features, the addition of image texture information can increase the degree of distinction of these different types and thereby improve the classification accuracy. However, the addition of the textural information for some objects with similar texture features will cause misclassification and reduce the classification accuracy for these types of images. (3) This method can realize the optimal selection of spectrum and texture bands of a hyperspectral image and has a certain universality. Also, the texture information will be richer and this method will be more practical through increasing the spatial resolution of images.

Additional information

Funding

This work was supported by the National Science Foundation of China [61371189]; the Open Funds for State Key Laboratory of Earthquake Dynamics [201211k0332]; the Fundamental Research Funds for the Central Universities [11CX05015A].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.