467
Views
23
CrossRef citations to date
0
Altmetric
Articles

GeoEye-1 satellite versus ground-based multispectral data for estimating nitrogen status of turfgrasses

, , , , , , & show all
Pages 2238-2251 | Received 27 Aug 2014, Accepted 19 Feb 2015, Published online: 23 Apr 2015
 

Abstract

Satellite remote sensing of leaf nitrogen (N) content is an interesting technique for agricultural crops for both economic and environmental reasons since it allows the monitoring of fertilization, and hence can potentially reduce the application of N according to real plant needs. The objective of this trial was to compare the N status in different turfgrasses using both remote multispectral data acquired by GeoEye-1 satellite and two ground-based instruments. The study focused on creating a N content gradient on three warm-season turfgrasses, (Cynodon dactylon × transvaalensis ‘Patriot’, Paspalum vaginatum ‘Salam’, Zoysia matrella ‘Zeon’), and two cool-season (Festuca arundinacea ‘Grande’, Lolium perenne ‘Regal 5’). The linear gradient of applied N ranged from 0 to 342 kg ha−1 for the warm-season and from 0 to 190 kg ha−1 for the cool-season turfgrasses. Proximity and remote-sensed reflectance measurements were acquired and used to determine the normalized difference vegetation index (NDVI). Our results proved that proximity-sensed NDVI is highly correlated with data acquired from satellite imagery. The correlation coefficients between data from the satellite and the other sensors ranged from 0.90 to 0.99 for the warm-season and from 0.83 to 0.97 for the cool-season species. ‘Patriot’ had a clippings N content ranging from 1.20% to 4.1%, thus emerging as the most reactive species to N fertilization. As such, the GeoEye-1 satellite can adequately assess the N status of different turfgrass species and its spatial variability within a field, depending on the N rates applied. In future, information obtained from satellites could allow precision fertilizer management on sports fields, golf courses, or other extended green areas.

Additional information

Funding

Satellite data acquisition and processing were supported by Monstep s.r.l.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.