456
Views
9
CrossRef citations to date
0
Altmetric
Articles

Fine spatial resolution residential land-use data for small-area population mapping: a case study in Riyadh, Saudi Arabia

, &
Pages 4315-4331 | Received 01 Apr 2015, Accepted 29 Jul 2015, Published online: 27 Aug 2015
 

Abstract

Rapid growth in the world’s urban population presents many challenges to planning and service provision. Conventional sources of population data often fail to provide spatially and temporally detailed information on changing urban populations. While downscaling methods have helped bridge this gap, use of fine spatial resolution data coupled with object-based image analysis (OBIA) methods is relatively novel, and few studies exist outside the western, developed world. This article presents a study in Riyadh, Saudi Arabia, in which population distribution estimates were obtained by downscaling using detailed residential land-use classes derived from the application of OBIA to fine spatial resolution remotely sensed imagery. To assess the utility of these data for population downscaling, three statistical regression models (using built area, residential built area, and detailed residential built area) and two dasymetric areal interpolation models (using residential built area and detailed residential built area) were applied to downscale the density of dwelling units, prior to estimating the population distribution through a simple transform. The research suggests that, for regression, the proportion of residential land use (Model 2) increased the accuracy over built area proportion (Model 1), and, in a multivariate extension, the proportions of six separate residential land-use classes (Model 3) increased the accuracy further, thereby demonstrating the value of the fine spatial resolution imagery. For example, the actual number of dwelling units was 7771 and the estimated numbers of dwelling units of Models 1 and 3 were 10,598 and 8759, respectively. Moreover, the root mean square error (RMSE) was 5.9 for Model 1 and 2.6 for Model 3. Additionally, six-class dasymetric mapping was evaluated in comparison to the conventional binary dasymetric mapping approach. The six-class dasymetric mapping approach was found to be slightly more accurate than binary dasymetric mapping.

Acknowledgements

The authors acknowledge King Abdulaziz City for Science and Technology (KACST) and the High Commission for the Development of Arriyadh (HCDA) for provision of data sets. PMA is grateful to the University of Utrecht for supporting him with the Belle van Zuylen Chair.

Additional information

Funding

The work was supported by the National Center for Remote Sensing Technology, Space and Aeronautics Research Institute, King Abdulaziz City for Science and Technology (KACST).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.