1,011
Views
60
CrossRef citations to date
0
Altmetric
Articles

Evaluation of Landsat 8 OLI imagery for unsupervised inland water extraction

, , , &
Pages 1826-1844 | Received 18 Jun 2015, Accepted 13 Mar 2016, Published online: 11 Apr 2016
 

ABSTRACT

The successful launch of the Landsat 8 satellite continues the Earth observation of the Landsat series, which has been taking place for nearly 40 years. With the increase in the band number and the improved spectral range compared with the previous Landsat imagery, it will be possible to expand the application of the new Landsat 8 imagery. The purpose of this study is to explore water extraction based on the new Landsat 8 Operational Land Imager (OLI) imagery. According to the specific inland water conditions (clear water, turbid water, and eutrophic water), a number of highly adaptable water indices are assessed for water extraction using Landsat OLI imagery. The results show that clear water is the easiest to extract among the different types of waterbodies, with the highest average accuracy of 97%. The highest-accuracy methods are the automated water extraction index for shadow pixels (AWEIsh), the normalized difference water index using bands 4 and 7 (NDWI47), and the normalized difference water index using bands 3 and 7 (NDWI37), with accuracies of 98.55%, 95.50%, and 96.61%, corresponding to clear water, turbid water, and eutrophic water, respectively. Through the analysis of the different methods for optimal band selection, the seventh band OLI7 (shortwave infrared 2, SWIR-2) of Landsat OLI shows the best performance in water identification. When applying the water indices to water extraction, Otsu’s algorithm has been used to automatically select the water threshold. Using extensive experiments with Otsu’s algorithm and a manual method, it was found that Otsu’s algorithm can replace manual selection and has the ability to select an accurate threshold for water extraction.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by the [National Nature Science Foundation of China] under Grant [number 41201426, 41325005, 41571407 & 4151101326]; [Shanghai Rising-Star Program] under Grant [number 15QA1403700]; [National Basic Research Program of China-973 program] under Grant [number 2012CB957701]; and [Fundamental Research Funds for the Central Universities].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.