132
Views
3
CrossRef citations to date
0
Altmetric
Articles

Evaluation of different orientation angle distributions within the X-Bragg scattering model for bare soil moisture estimation

&
Pages 4379-4395 | Received 04 Aug 2016, Accepted 10 Apr 2017, Published online: 22 May 2017
 

ABSTRACT

In this paper, the applicability of three different orientation angle distributions of surface facets within the extended Bragg (X-Bragg) scattering model is investigated for estimation of soil moisture over bare surfaces using both Eigen-based and model-based polarimetric synthetic aperture radar (PolSAR) decomposition techniques. The three distributions considered for investigation in the X-Bragg model are uniform, half cosine, and the Lee distributions. In order to understand the sensitivity of the model using the three orientation angle distributions, key polarimetric parameters, such as scattering entropy (H), scattering anisotropy (A), scattering mechanism (α), cross-pol power (T33), linear T12 coherence (|γ(HH+VV)(HH–VV)|), are simulated and analysed for various widths of distributions. The analysis of the simulated polarimetric parameters show that the Lee distribution has a reduced roughness validity range compared with the uniform and half cosine distributions. DLR E-SAR L-band data from the AgriSAR’2006 campaign over the Demmin test site in Northern Germany are inverted for soil moisture over bare surfaces. The inverted soil moisture from the physics-based X-Bragg model is compared with in situ measured TDR (time domain reflectometry) soil moisture values. The inversion results using the Eigen-based decomposition reveal similar root mean square error (RMSE = 14 vol.%) and inversion rates for three distributions. The model-based decomposition inversion results obtained at various fixed widths of distributions reveal that the Lee distribution shows less RMSE of 8 vol.% and high inversion rates for moderate surface roughness (ks = 0.5) as compared with half cosine and uniform distributions.

Acknowledgments

G. G. Ponnurangam acknowledges the European Space Agency (ESA) for providing AgriSAR’2006 campaign data through EO Project Campaign ID 14114.

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.