489
Views
13
CrossRef citations to date
0
Altmetric
Articles

The role of atmospheric correction algorithms in the prediction of soil organic carbon from Hyperion data

ORCID Icon, ORCID Icon, &
Pages 6435-6456 | Received 01 Mar 2017, Accepted 01 Jul 2017, Published online: 26 Jul 2017
 

ABSTRACT

In this study, the role of atmospheric correction algorithm in the prediction of soil organic carbon (SOC) from spaceborne hyperspectral sensor (Hyperion) visible near-infrared (vis-NIR, 400–2500 nm) data was analysed in fields located in two different geographical settings, viz. Karnataka in India and Narrabri in Australia. Atmospheric correction algorithms, (1) ATmospheric CORection (ATCOR), (2) Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH), (3) 6S, and (4) QUick Atmospheric Correction (QUAC), were employed for retrieving spectral reflectance from radiance image. The results showed that ATCOR corrected spectra coupled with partial least square regression prediction model, produced the best SOC prediction performances, irrespective of the study area. Comparing the results across study areas, Karnataka region gave lower prediction accuracy than Narrabri region. This may be explained due to difference in spatial arrangement of field conditions. A spectral similarity comparison of atmospherically corrected Hyperion spectra of soil samples with field-measured vis-NIR spectra was performed. Among the atmospheric correction algorithms, ATCOR corrected spectra found to capture the pattern in soil reflectance curve near 2200 nm. ATCOR’s finer spectral sampling distance in shortwave infrared wavelength region compared to other models may be the main reason for its better performance. This work would open up a great scope for accurate SOC mapping when future hyperspectral missions are realized.

Acknowledgements

The authors are grateful to Daniel Schlaepfer, ReSe Applications and Emanuele Mandanici, DICAM, University of Bologna for providing software and clarifying our issues related to the atmospheric correction programmes ATCOR and VisualSixS, respectively. We are also immensely grateful to Rudolf Richter, DLR-German Aerospace Centre and Wesley J. Moses, Naval Research Laboratory, Washington, for their suggestions and guidance provided through e-mail responses.

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.