927
Views
28
CrossRef citations to date
0
Altmetric
Articles

A comparison of gap-filling approaches for Landsat-7 satellite data

, , &
Pages 6653-6679 | Received 13 Sep 2016, Accepted 10 Jul 2017, Published online: 10 Aug 2017
 

ABSTRACT

The purpose of this study is to assess the relative performance of four different gap-filling approaches across a range of land-surface conditions, including both homogeneous and heterogeneous areas as well as in scenes with abrupt changes in landscape elements. The techniques considered in this study include: (1) Kriging and co-Kriging; (2) geostatistical neighbourhood similar pixel interpolator (GNSPI); (3) a weighted linear regression (WLR) algorithm; and (4) the direct sampling (DS) method. To examine the impact of image availability and the influence of temporal distance on the selection of input training data (i.e. time separating the training data from the gap-filled target image), input images acquired within the same season (temporally close) as well as in different seasons (temporally far) to the target image were examined, as was the case of using information only within the target image itself. Root mean square error (RMSE), mean spectral angle (MSA), and coefficient of determination (R2) were used as the evaluation metrics to assess the prediction results. In addition, the overall accuracy (OA) and kappa coefficient (kappa) were used to assess a land-cover classification based on the gap-filled images. Results show that all of the gap-filling approaches provide satisfactory results for the homogeneous case, with R2 > 0.93 for bands 1 and 2 in all cases and R2 > 0.80 for bands 3 and 4 in most cases. For the heterogeneous example, GNSPI performs the best, with R2 > 0.85 for all tested cases. WLR and GNSPI exhibit equivalent accuracy when a temporally close input image is used (i.e. WLR and GNSPI both have an R2 equal to 0.89 for band 1). For the case of abrupt changes in scene elements or in the absence of ancillary data, the DS approach outperforms the other tested methods.

Acknowledgements

The research reported in this publication was supported by funding from King Abdullah University of Science and Technology (KAUST).

Disclosure statement

No potential conflict of interest was reported by the authors.

Supplemental data

Supplemental data for this article can be accessed here.

Additional information

Funding

This work was supported by funding from King Abdullah University of Science and Technology (KAUST).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.