553
Views
5
CrossRef citations to date
0
Altmetric
Research Article

ANN estimation model for photogrammetry-based UAV flight planning optimisation

ORCID Icon, ORCID Icon & ORCID Icon
Pages 5686-5708 | Received 15 Dec 2020, Accepted 18 Mar 2021, Published online: 09 Aug 2021
 

ABSTRACT

Artificial intelligence (AI) is undergoing a ground-breaking period. Recently, AI affects almost every part of human life. Using AI in path planning for Unmanned Aerial Vehicle (UAV) attracts attention as a novel need. The inputs that form the base of UAV use in photogrammetry are UAV Type (UT), Ground Sampling Distance (GSD), Overlap Rates (OR), and Atmospheric Conditions (AC). Input parameters directly impact the UAV’s Flight Time (FT) and Battery Status (BS). Weighting and optimizing these parameters are the main ideas of this study.

The effects of input values (GSD, OR, UT, AC) on the outputs (BS and FT) were optimized using Artificial Neural Networks (ANN) in this study. For the analysis, results have been produced in which different training algorithms are preferred (Gradient Descent – GD – and Levenberg-Marquardt – LM). The GD algorithm has reached 77.65% accuracy in FT estimation and 80.91% estimation accuracy on normalized data on the BS. Then, the correlation between the produced model and the input parameters and the output parameters was determined, and the weights of the inputs were revealed. As a result, it was determined that the AC parameter has the most significant effect on BS and FT. Also, it has been identified that the normalization process has a considerable impact on optimization.

Acknowledgements

This research incorporates a part of Hasan Bilgehan MAKİNECİ’s doctoral thesis.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.