101
Views
0
CrossRef citations to date
0
Altmetric
Research article

MFAGNet: multi-scale frequency attention gating network for land cover classification

, , , &
Pages 6670-6697 | Received 11 May 2023, Accepted 07 Oct 2023, Published online: 09 Nov 2023
 

ABSTRACT

As a classic problem of high-resolution remote sensing image tasks, land cover classification has many challenges, for instance, variable scales and low-edge discrimination. Traditional spatial semantic segmentation methods based on single-scale feature extraction are challenging to model multi-scale features. They cannot effectively fit high-resolution remote sensing images with variable scales and are prone to misclassification issues. On the other hand, spatial multi-scale semantic segmentation methods lack edge constraints, which can easily lead to edge segmentation ambiguity issues. We propose a segmentation network based on a multi-scale frequency-domain attention gating mechanism (MFAGNet) to solve the above problems. Specifically, we obtain multi-scale features through multi-scale input and design the discrete cosine transform channel attention module (DCTCAM). In DCTCAM, we extract global low-frequency features and effectively alleviate misclassification caused by scale changes. The edge features of the image are obtained through the high-frequency feature extraction module (HFEM) by using edge detection operators to enhance the model’s ability to recognize edges. Additionally, no further pooling operations are employed except for a single max pooling layer in the backbone network. In this paper, we design a new gating mechanism to dynamically control the extraction ratio of various frequency features so that it can adapt to input images of different scales. This paper conducts comparative experiments on three high-resolution land cover datasets: GID, Vaihingen, and Potsdam. The new algorithm proposed compares with classic semantic segmentation models such as DANet, PSPNet, SegNet, UNet, DeepLabv3+, FcaNet, BiSeNet, AFN, and FastFCN. The experimental results show that MFAGNet is superior to the comparison models. With no significant increase in computing overhead, MFAGNet obtains MIoU of 69.05%, 73.40%, and 79.42% on the standard data sets GID, Vaihingen, and Potsdam, respectively.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by the key projects supported by NSFC joint fund under Grant U1911205, in part by the science, and technology project of Hubei Provincial Department of Natural Resources under Grant ZRZY2023KJ15.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.