85
Views
0
CrossRef citations to date
0
Altmetric
Research article

Convolutional transformer attention network with few-shot learning for grassland degradation monitoring using UAV hyperspectral imagery

ORCID Icon, &
Pages 2109-2135 | Received 31 Oct 2023, Accepted 20 Feb 2024, Published online: 11 Mar 2024
 

ABSTRACT

In recent years, the desertification of grasslands has increased due to various factors, including both global warming and human activities. It is an essential basis for grassland degradation monitoring to monitor the dynamic change of desert grassland vegetation communities and distribution statistics. Although unmanned aerial vehicle (UAV) remote sensing images have allowed us to achieve dynamic real-time grassland monitoring, the distribution of desert grassland ground objects can be random and narrow, thus increasing the difficulty of sample labelling of remote sensing imagery. Therefore, to reduce the number of samples required for the model, this research proposes a convolutional transformer attention network (CTAN) to identify desert grassland ground objects and validate it on a self-collected desert grassland dataset. The network utilizes the transformer model to enhance its learning of global pixels so that it suppresses the transmission of background pixels within the network. Furthermore, the edge convolution module is designed to strengthen the network’s learning for edge pixels, improving its identification effect. The results show that the network provides 97.22% of overall accuracy (OA), 94.35% of average accuracy (AA), and 0.9398 of Kappa for ground object recognition in desert grassland. The model improves OA by 2.36–9.85% points compared to methods in the same field and 0.8–6.35% points compared to methods in hyperspectral imagery classification. The experimental results show the superior performance of the CTAN model for recognizing desert grassland objects, which helps the management and restoration of desert grasslands.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Data availability statement

Supplementary material related to this article available from the corresponding author on reasonable request.

Additional information

Funding

This work was supported by the Key Project of Higher Education Research in Inner Mongolia Autonomous Region [No. NJZZ23037], and the Joint Fund Project of Natural Science Foundation of Inner Mongolia Autonomous Region [No. 2023LHMS06010].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.