1,428
Views
120
CrossRef citations to date
0
Altmetric
feature articles

Convective Heat Transfer and Fluid Dynamic Characteristics of SiO2 Ethylene Glycol/Water Nanofluid

, , &
Pages 1027-1035 | Published online: 14 Jul 2010
 

Abstract

Nanofluids comprised of silicon dioxide (SiO2) nanoparticles suspended in a 60:40 (% by weight) ethylene glycol and water (EG/water) mixture were investigated for their heat transfer and fluid dynamic performance. First, the rheological properties of different volume percents of SiO2 nanofluids were investigated at varying temperatures. The effect of particle diameter (20 nm, 50 nm, 100 nm) on the viscosity of the fluid was investigated. Subsequent experiments were performed to investigate the convective heat transfer enhancement of nanofluids in the turbulent regime by using the viscosity values measured. The experimental system was first tested with EG/water mixture to establish agreement with the Dittus-Boelter equation for Nusselt number and with Blasius equation for friction factor. The increase in heat transfer coefficient due to nanofluids for various volume concentrations has been presented. Pressure loss was observed to increase with nanoparticle volume concentration. It was observed that an increase in particle diameter increased the heat transfer coefficient. Typical percentage increases of heat transfer coefficient and pressure loss at fixed Reynolds number are presented.

ACKNOWLEDGMENTS

Financial assistance from the Arctic Region Supercomputing Center and the Dean of the Graduate School at University of Alaska Fairbanks is gratefully acknowledged. Authors are thankful to the Mechanical Engineering Department and Petroleum Development Laboratory for providing the experimental facilities to measure heat transfer and viscosity.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.