396
Views
10
CrossRef citations to date
0
Altmetric
feature articles

Heat Transfer and Fluid Flow on Dimpled Surface With Bleed Flow

, , , , &
 

Abstract

This study investigates the effects of bleed flow on heat transfer and fluid flow on a dimpled surface in a rectangular channel. The heat transfer on a dimpled surface with bleed flow is compared with that on a dimpled surface without bleed flow. The height of the channel is 15.0 mm. The dimples are arrayed in staggered on the bottom surface of the channel with a pitch of 15.0 mm. The dimple depth is 3.75 mm and the dimple footprint diameter is 13.0 mm. The bleed hole is installed on the inner surface of the dimple and the diameter of the hole is 1.3 mm. The tests were conducted with varying Reynolds numbers from 1000 to 10,000 and 0.5% of total mass flow is flowing out through a bleed hole. A numerical method was employed to determine the detailed heat transfer coefficients. Commercial computational fluid dynamics software, ANSYS CFX 13.0, is adopted and the Shear Stress Transport model is set to turbulent model. As a result, the overall heat transfer rate on dimpled surface with bleed flow is 10–20% higher than that without bleed flow.

Acknowledgments

The authors gratefully acknowledge that this work is supported by the Korea Government Ministry of Knowledge Economy. This work was supported by the aerospace research program (KA00157) of Korea Aerospace Research Institute (KARI) and the human resources development program (No. 20134030200200) of the Korean Institute of Energy Technology Evaluation and Planning (KETEP). Those programs are funded by the Korean government Ministry of Trade, Industry and Energy.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.