90
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Biphenyl-induced cytotoxicity is mediated by an increase in intracellular Zn2+

, , , , , & show all
Pages 430-435 | Received 14 Mar 2018, Accepted 05 Jul 2018, Published online: 11 Sep 2018
 

Abstract

Biphenyl is found both in natural and anthropogenic sources and is used as a fungistat in the packaging of citrus fruits. Acute exposure to high levels of biphenyl has been observed to cause skin irritation and toxic effects on the liver and kidneys. However, the mechanisms of cytotoxicity induced by biphenyl are not yet well understood. In the present study, the cytotoxicity of biphenyl was studied by flow cytometry with fluorescent probes. Biphenyl at 100 μM significantly increased cell lethality after 3 h in rat thymocytes. In addition, biphenyl at 100 μM or more elevated intracellular Zn2+ levels. N,N,N′,N′-Tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), an intracellular and extracellular Zn2+ chelator, but not diethylenetriamine-N,N,N′,N″,N″-pentaacetic acid (DTPA), a membrane-impermeable Zn2+ chelator, attenuated the biphenyl-induced increase in intracellular Zn2+ levels and cell death. These results suggested that biphenyl-induced cytotoxicity caused an increase in intracellular Zn2+ levels, which was dependent on internal Zn2+. Moreover, biphenyl led to an increase in sensitivity to oxidative stress, while TPEN inhibited this biphenyl-induced increase. Our findings revealed that biphenyl caused an increase in the intracellular free Zn2+ concentration, inducing cytotoxicity, cell death, and an increase in sensitivity to oxidative stress.

Disclosure statement

No potential conflict of interest was reported by the author.

Additional information

Funding

This study was supported by a Grant-in-Aid for Scientific Research [C26340039] from the Japan Society for the Promotion of Science.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.