432
Views
11
CrossRef citations to date
0
Altmetric
Research Articles

Ameliorative effects of melatonin against nano and ionic cobalt induced genotoxicity in two in vivo Drosophila assays

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 279-286 | Received 02 Mar 2018, Accepted 14 Feb 2019, Published online: 18 Mar 2019
 

Abstract

The aim of this study is to evaluate the ameliorative effect of melatonin (MEL) against induced genotoxicity by cobalt (II) chloride (CoCl2) and cobalt nanoparticles (CoNPs) (50 nm). Genotoxicity of CoCl2 and CoNPs were investigated using single cell gel electrophoresis (COMET) in Drosophila melanogaster hemocytes, which are blood cells of the Drosophila, and the somatic mutation and recombination test (SMART) was used to investigate mutant effects on the Drosophila wings. Three concentrations (0.1, 1, and 10 mM) of CoNPs and CoCl2 were applied to demonstrate their genotoxic potential. Both CoNPs and CoCl2 have mutagenic potential for the three concentrations tested in the COMET assay; however, only the 10 mM concentration of the ionic form and two high concentrations (1 and 10 mM) of CoNPs induced genotoxicity in the Drosophila SMART assay. Three different concentrations of MEL (0.1, 0.5 and 2.5 mM) were used against cobalt at highest concentration (10 mM) of both CoCl2 and CoNPs in both the SMART and COMET assays. MEL ameliorated the genotoxicity induced by CoCl2 and CoNPs in vivo Drosophila COMET and SMART assays.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This study was supported by the [Scientific and Technical Research Council of Turkey (TUBITAK) #1] under Grant (113Z564); and [Akdeniz University Scientific Research Projects Coordination Unit #2] under Grant (FDK-2015–1000).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.