146
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Evaluation of the genotoxicity and teratogenicity of xylan using different model approaches

, , , , , , & show all
Pages 340-346 | Received 08 May 2019, Accepted 12 Feb 2020, Published online: 31 Mar 2020
 

Abstract

Xylan is the second most abundant polysaccharide group in plants and has a wide variety of food and pharmaceutical applications. However, little information on the safety assessment of extracted xylan as dietary supplement is available. As part of a comprehensive toxicological assessment, this study examined the potential toxicity of xylan extracted from sugarcane bagasse by three genotoxicity studies (Ames test, in vivo mice bone marrow micronucleus test, and mice sperm abnormality test) and a teratogenicity study in rats. In the Ames test, xylan showed no mutagenic activity on histidine dependent strains of Salmonella typhimurium at concentrations up to 5000 μg/plate; results of the in vivo mice bone marrow micronucleus test and mice sperm abnormality test indicated no significant effect on sperm morphology and micronucleus rate of polychromatic erythrocytes in mice at doses up to 5 g/kg body weight. In the teratogenicity study, a total of 60 pregnant rats were exposed to 10, 5, and 2.5% xylan in diet, from gestation days 7 to 16, and the no-observed-adverse-effect levels (NOAEL) of xylan was determined to be 9.8 g/kg body weight. The safe dose of xylan for human was estimated to be 98 mg/kg/day (i.e., 6.86 g/day for a 70-kg person), using a 100-fold safety factor. Taken together, results of this study indicated that xylan is practically nontoxic in terms of potential dietary consumption by humans in food or as a dietary supplement.

Acknowledgement

The authors gratefully acknowledge personnel of the Institute of Toxicology, Guangxi Center for Disease Prevention and Control for their technical assistance.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by Guangxi University of Chinese Medicine [Grant No. 2018BS031 and 2019XK081] and the National Natural Science Foundation of China [Grant No. 81602888].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.