81
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

In vitro hematotoxicity of Vernonanthura polyanthes leaf aqueous extract and its fractions

ORCID Icon, , , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1026-1034 | Received 22 May 2020, Accepted 19 Jul 2020, Published online: 06 Aug 2020
 

Abstract

Vernonanthura polyanthes, popularly known as ‘assa-peixe’, is widely used in Brazil for therapeutic purpose mainly to treat respiratory tract problems. However, few studies investigated its chemical safety. In this way, we first obtained the V. polyanthes leaf aqueous extract (VpLAE) and three fractions (aqueous; n-butanol, n-BF; and ethyl acetate), and we chemically characterized this material. Then, the cytogenotoxic potential of the VpLAE and its fractions was investigated against human erythrocytes and lymphocytes using Trypan blue exclusion test of cell viability and CometChip. The phytochemical screening of V. polyanthes leaf revealed the presence of total phenolic compounds, flavonoids, tannins, coumarins, terpenic compounds, and cardioactive heterosides. n-BF presented the highest total phenolic, flavonoids, and tannins contents and, consequently, the highest antioxidant activity, according to the DPPH free radical scavenging method. Although the VpLAE and its fractions did not cause death of erythrocytes, the cells acquired an echinocytic form. Regarding lymphocytes, VpLAE and its fractions presented cytotoxicity and genotoxicity. When VpLAE or its fractions were co-treated with doxorubicin (DXR), a recognized cytotoxic drug, we observed an enhancement of DXR cytotoxicity against lymphocytes, but the DXR genotoxicity decreased around 15%. Since the VpLAE and its fractions increased the DXR cytotoxicity and decreased its genotoxicity, further studies should be conducted for the development of an adjuvant drug from this extract to reduce the side effects of chemotherapy. Moreover, the indiscriminate use of ‘assa-peixe’ by local people should be discouraged.

Disclosure statement

The authors report no conflict of interest.

Additional information

Funding

We would like to thank Dr. Bevin Engelward from Massachusetts Institute of Technology (MIT) for donating the CometChip mold used in this work via a grant from the National Institutes of Health [NIH R44 ES024698]. We also thank Fundação de Amparo à Pesquisa do Estado de Goiás [FAPEG: PPP/201610267001019] for financial support and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Universidade Estadual de Goiás (UEG) for scholarships.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.