218
Views
12
CrossRef citations to date
0
Altmetric
Research Articles

L-Carnitine alleviates hepatic and renal mitochondrial-dependent apoptotic progression induced by letrozole in female rats through modulation of Nrf-2, Cyt c and CASP-3 signaling

ORCID Icon, , , , &
Pages 357-368 | Received 05 Aug 2021, Accepted 31 Jan 2022, Published online: 17 Feb 2022
 

Abstract

Letrozole (LTZ) is a non-steroidal aromatase inhibitor that is commonly used in breast cancer therapy. It has several side effects that might lead to the drug's cessation and data of LTZ's potential adverse effects on the hepatorenal microenvironment was conflicting. In addition, searching for therapeutic interventions that could modulate its adverse effects will be very beneficial. So, this study aims to determine the impact of LTZ on the hepatorenal microenvironment in cyclic female rats with a proposed regulatory role of L-Carnitine (LC) supplementation giving molecular insights into its possible mechanism of action. LTZ (1 mg/kg using 0.5% carboxy methyl cellulose as a vehicle for 21 consecutive days orally) to assess its impact on hepatorenal microenvironment. After treatment with LC (100 mg/kg orally) for 14 days, hepatorenal redox state (lipid peroxides (MDA), reduced glutathione (GSH) and catalase enzyme (CAT)), as well as relative gene expression of nuclear factor erythroid 2-related factor 2 (Nrf-2), cytochrome-c (Cyt c) and caspase-3 (CASP-3) were evaluated. Histopathological examination and immunohistochemical staining of CASP-3 in both liver and kidney were done. LTZ altered hepatic and renal functions. Relative gene expression of hepatorenal Nrf-2, Cyt c and CASP-3 as well as redox state revealed significant deterioration. Also, the liver and kidney tissues showed several micromorphological changes and intense reaction to CASP-3 upon immunohistochemical staining. It can be concluded that LC alleviates LTZ induced hepatorenal oxidative stress (OS) and mitochondrial-dependent apoptotic progression through modulation of Nrf-2, Cyt c, and CASP-3 signaling in female rats.

Disclosure statement

The authors declare no conflicts of interests exist relevant to the content of this article.

Additional information

Funding

This work did not receive any specific funding for the conduction of this study.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.