215
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Genotoxic potential of different nano-silver halides in cultured human lymphocyte cells

, ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon
Pages 768-780 | Received 25 Mar 2022, Accepted 23 Jun 2022, Published online: 08 Jul 2022
 

Abstract

Most antibacterial applications in nanotechnology are carried out using silver nanoparticles (AgNPs). However, there is a dearth of information on the biological effects of AgNPs on human blood cells. In this study, the cytotoxic and genotoxic potentials of ionic silver (Ag+), AgNP, silver bromide (AgBr), silver chloride (AgCl), and silver iodide (AgI) were evaluated through chromosome aberration (CA) test and cytokinesis-blocked micronucleus (CBMN) test in human cultured lymphocytes in vitro. Furthermore, the potential damages that can cause to DNA were evaluated through alkaline single cell gel electrophoresis (Comet) assay on isolated lymphocytes. The results showed that AgNPs exerted cytotoxic effects by reducing the cytokinesis-block proliferation index and mitotic index at 24 and 48 h. AgNPs also increased micronucleus (MN) formation at both exposure times in the cultured cells. Meanwhile, AgCl had no genotoxic effects on the human lymphocyte cultured cells but had a cytotoxic effect at high doses. AgNP, Ag+, AgBr, and AgI caused substantial DNA damage by forming DNA strand breaks. They may also have clastogenic, genotoxic and cytotoxic effects on human lymphocyte cells. Based on the foregoing findings, silver nanomaterials may have genotoxic and cytotoxic potentials on human peripheral lymphocytes in vitro.

Graphical Abstract

Disclosure statement

Authors have no conflict of interest.

Additional information

Funding

This study was supported by the Scientific and Technical Research Council of Turkey (TUBITAK) under Grant Nos. 116Z250 and 1929B011700249.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.