163
Views
24
CrossRef citations to date
0
Altmetric
Original Articles

Ensemble Forecasting of Storm Surges

, &
Pages 91-99 | Received 28 Mar 2008, Accepted 24 Feb 2009, Published online: 12 May 2009
 

Abstract

The overtopping of flood defenses by coastal storm surges constitutes a significant threat to life and property. Like all forecasts, storm surge predictions have an associated uncertainty, but this is not directly predicted by current operational systems. The dominant source of this uncertainty is thought to be uncertainty in the driving atmospheric forecast of conditions at the sea surface, which can vary substantially depending on the meteorological situation. Ensemble prediction is a technique used to assess uncertainty in forecasts of complex nonlinear systems such as weather, where small errors can quickly grow to produce significantly different outcomes. It works by running not one but several forecasts, using slightly different initial conditions, boundary conditions, and/or model physics. These are chosen to sample the range of uncertainty in model inputs and formulation so that the corresponding forecasts will sample the range of possible results that are consistent with those uncertainties. The United Kingdom Met Office has recently developed the Met Office Global and Regional Ensemble Prediction System (MOGREPS), which provides 24 different predictions of meteorological evolution over a North Atlantic and European domain with a 24 km grid length. The aim of the present project is to run a barotropic storm surge prediction for each MOGREPS ensemble member, and thereby estimate the risk of damaging events given the forecast uncertainties which are sampled by the ensemble. The system forecasts 54 hours ahead and runs twice per day. In most situations, the ensemble develops rather little spread, suggesting a fairly predictable situation and a high degree of confidence in the forecast. On some occasions, however, the spread is much larger, suggesting a greater degree of uncertainty. Initial verification results are encouraging, although statistical evaluation suggests the ensemble spread is generally too small.

Acknowledgements

This work was funded by the Environment Agency for England and Wales under contract SC050069 Coastal Flood Forecasting. Tide gauge data were supplied by the British Oceanographic Data Center.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.