292
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

An Observational and Numerical Modeling of Thermocline Development in the Persian Gulf

, &
Pages 32-48 | Received 27 Sep 2010, Accepted 06 Jan 2011, Published online: 09 Mar 2012
 

Abstract

An observational and numerical (Princeton Ocean Model) study of the summer thermocline development in the Persian Gulf (PG) shows that as the northwesterly cold winter wind weakens and become warmer, the fresher inflow from Oman Sea penetrates much further into the PG. This is also associated with stronger solar radiation leading to the near surface thermocline development over the whole of the PG. For more realistic monthly averaged wind, the thermocline develops as is indicated by observations. This is particularly marked in the deeper central part in which it grows in depth about 0.2(m) per day. The formation of thermocline decreases the dissolved oxygen in water column due to induced stratification. Over the PG the temperature difference between surface and subsurface increases exponentially from March until May when it levels off, with similar smaller variations for salinity differences than observed.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.