832
Views
21
CrossRef citations to date
0
Altmetric
Articles

Sea-Land Segmentation Using Deep Learning Techniques for Landsat-8 OLI Imagery

, , , , , , , , & show all
Pages 105-133 | Received 18 Jul 2019, Accepted 06 Jan 2020, Published online: 20 Jan 2020
 

Abstract

Automated coastline extraction from optical satellites is fundamental to coastal mapping, and sea-land segmentation is the core technology of coastline extraction. Deep convolutional neural networks (DCNNs) have performed well in semantic segmentation in recent years. However, sea-land segmentation using deep learning techniques remains a challenging task, due to the lack of a benchmark dataset and the difficulty of deciding which semantic segmentation model to use. We present a comparative framework of sea-land segmentation to Landsat-8 OLI imagery via semantic segmentation in deep learning techniques. Three issues are investigated: (1) constructing a sea-land benchmark dataset using Landsat-8 Operational Land Imager (OLI) imagery consisting of 18,000 km2 of coastline around China; (2) evaluating the feasibility and performance of sea-land segmentation by comparing the accuracy assessment, time complexity, spatial complexity and stability of state-of-the-art DCNNs methods; (3) choosing the most suitable semantic segmentation model for sea-land segmentation in accordance with Akaike information criterion (AIC) and Bayesian information criterion (BIC) model selection. Results show that the average test accuracy achieves over 99% accuracy, and the mean Intersection over Unions (mean IoU) is above 92%. These findings demonstrate that the Fully Convolutional DenseNet (FC-DenseNet) performs better than other state-of-the-art methods in sea-land segmentation, based on both AIC and BIC. Considering training time efficiency, DeeplabV3+ performs better for sea-land segmentation. The sea-land segmentation benchmark dataset is available at: https://pan.baidu.com/s/1BlnHiltOLbLKe4TG8lZ5xg.

Additional information

Funding

This work was supported by the National Natural Science Foundation of China (41871325, 61806123), National Key Research and Development Project of China (2017YFB0502700), The Korea Evaluation Institute of Industrial Technology (KEIT) funded by the Ministry of Trade, Industry & Energy (MOTIE) (1415162366, 1415162820); and Shanghai Rising-Star Program (17QB1403800).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.