544
Views
81
CrossRef citations to date
0
Altmetric
Original Articles

Returning to Their Roots: Iron-Oxidizing Bacteria Enhance Short-Term Plaque Formation in the Wetland-Plant Rhizosphere

, , &
Pages 65-73 | Received 05 Jan 2006, Accepted 30 Oct 2006, Published online: 24 Feb 2007
 

In the wetland rhizosphere, high densities of lithotrophic Fe(II)-oxidizing bacteria (FeOB) and a favorable environment (i.e., high Fe(II) availability and microaerobic conditions) suggest that these organisms are actively contributing to the formation of Fe plaque on plant roots. We manipulated the presence/absence of an Fe(II)-oxidizing bacterium (Sideroxydans paludicola, strain BrT) in axenic hydroponic microcosms containing the roots of intact Juncus effusus (soft rush) plants to determine if FeOB affected total rates of rhizosphere Fe(II) oxidation and Fe plaque accumulation. Our experimental data highlight the importance of both FeOB and plants in influencing short-term rates of rhizosphere Fe oxidation. Over time scales ca. 1 wk, the FeOB increased Fe(II) oxidation rates by 1.3 to 1.7 times relative to FeOB-free microcosms. Across multiple experimental trials, Fe(II) oxidation rates were significantly correlated with root biomass, reflecting the importance of radial O 2 loss in supporting rhizosphere Fe(II) oxidation. Rates of root Fe(III) plaque accumulation (time scales: 3 to 6 wk) were ∼ 70 to 83% lower than expected based on the short-term Fe(II) oxidation rates and were unaffected by the presence/absence of FeOB. Decreasing rates of Fe(II) oxidation and Fe(III) plaque accumulation with increasing time scales indicate changes in rates of Fe(II) diffusion and radial O 2 loss, shifts in the location of Fe oxide accumulation, or temporal changes in the microbial community within the microcosms. The microcosms used herein replicated many of the environmental characteristics of wetland systems and allowed us to demonstrate that FeOB can stimulate rates of Fe(II) oxidation in the wetland rhizosphere, a finding that has implications for the biogeochemical cycling of carbon, metals, and nutrients in wetland ecosystems.

Acknowledgments

Neubauer's Current address: Baruch Marine Field Laboratory, University of South Carolina, Georgetown, SC 29442, USA.

Current address for Toledo-Durán, University of Puerto Rico at Mayagüez, Mayagüez, Puerto Rico 00681.

We thank Kim Givler and Amy Wolfe for laboratory assistance. We also thank two anonymous reviewers for constructive comments that improved the manuscript. This work was supported by NSF grant DEB-9986981 to J.P.M and D.E.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.