233
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

Effect of Microbially Induced Anoxia on Cr(VI) Mobility at a Site Contaminated with Hyperalkaline Residue from Chromite Ore Processing

, , , &
Pages 68-82 | Received 22 Apr 2010, Accepted 25 May 2010, Published online: 07 Jan 2011
 

Abstract

This paper reports an investigation of microbially mediated Cr(VI) reduction in a hyperalkaline, chromium-contaminated soil-water system representative of the conditions at a chromite ore processing residue (COPR) site. Soil from the former surface layer that has been buried beneath a COPR tip for over 100 years was shown to have an active microbial population despite a pH value of 10.5. This microbial population was able to reduce nitrate using an electron donor(s) that was probably derived from the soil organic matter. With the addition of acetate, nitrate reduction was followed in turn by removal of aqueous Cr(VI) from solution, and then iron reduction. Removal of 300 μM aqueous Cr(VI) from solution was microbially mediated, probably by reductive precipitation, and occured over a few months. Thus, in soil that has had time to acclimatize to the prevailing pH value and Cr(VI) concentration, microbially mediated Cr(VI) reduction can be stimulated at a pH of 10.5 on a time scale compatible with engineering intervention at COPR-contaminated sites.

ACKNOWLEDGMENTS

RAW would like to acknowledge his funding from a John Henry Garner Scholarship at the University of Leeds. The authors would also like to thank Dr Phil Studds and Mark Bell, Ramboll UK, for help enabling the field work.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.