705
Views
28
CrossRef citations to date
0
Altmetric
Articles

Isolation, Selection and Characterization of Root-Associated Rock Phosphate Solubilizing Bacteria in Moroccan Wheat (Triticum aestivum L.)

ORCID Icon, , , &
Pages 230-241 | Received 24 Jul 2019, Accepted 13 Nov 2019, Published online: 23 Nov 2019
 

Abstract

Phosphorus (P) is the most important macronutrient next to nitrogen for the growth and development of plants. But often unavailable for plants because of its high reactivity with many soil constituents. Thus, the use of phosphate solubilizing bacteria (PSBs) as biofertilizers seems to be an effective way to resolve the soluble phosphorus availability in soil. The present study was conducted to isolate and characterize rock PSB associated with the rhizosphere of wheat (Triticum aestivum L.) from fourteen different wheat-growing sites of Meknes region in Morocco. A total of one hundred ninety-eight (198) rock PSBs were isolated employing NBRIP medium amended with rock phosphate (RP), out of which five strains (A17, A81, B26, B106, and B107) were selected for their strong ability to dissolve RP and were tested in vitro for plant growth-promoting (PGP) traits including production of indole acetic acid (IAA), siderophores, hydrogen cyanide (HCN), and antifungal activity, as well as their response to the effect of extrinsic and intrinsic stress. The 16S rRNA gene sequencing and phylogenetic analysis identified these isolates belong to four genera, Pantoea, Pseudomonas, Serratia, and Enterobacter. The phosphate solubilization index (SI) of selected isolates ranged between 2.3 and 2.7, and the amount of solubilized phosphorus in the liquid medium varied from 59.1 to 90.2 µg mL−1. HPLC analysis revealed that all the selected isolates produced multiple organic acids (oxalic, citric, gluconic succinic, and fumaric acids) from glucose under aerobic conditions. Except for the A81 strain, all selected isolates were able to produce IAA ranging between 2.9 and 21.2 µg mL−1. The isolates A17, B26, and B107 showed the ability to produce siderophores ranging from 79.3 to 20.8% siderophore units. Only two strains (A17 and B26) were able to produce HCN. All selected isolates showed good resistance against different environmental stresses like 10–50 °C temperature, 0.5–2 g L−1 salt concentration and 4.5–9 pH range, and against different antibiotics. The antagonistic effect showed that among the five selected strains, only two strains (B26 and A17) were able to suppress the growth of tested fungi. This study clearly indicates that our selected rock PSBs can be used as biofertilizers for grain crops after studying their interaction with the host crop and field evaluation.

Acknowledgments

We sincerely thank the authorities of the National Center for Scientific and Technical Research (CNRST), Rabat, Morocco especially the biological analysis platform for performing sequence analysis of 16S rRNA gene of our selected strains. We are also grateful to the technical staff of the Regional Center for Agronomic Research of Meknes for their technical assistance.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

We express our sincere thanks to the Dean of the Faculty of Sciences, Moulay Ismail University, Meknes, for their financial support.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.