123
Views
23
CrossRef citations to date
0
Altmetric
Original Articles

Sorption of Aluminum by Sulfate-Reducing Bacteria Isolated from Uranium Mine Tailings

Pages 267-275 | Published online: 29 Oct 2010
 

Abstract

Biosorption of aluminum by sulfate-reducing bacteria isolated from uranium mine tailings was examined. A top agar method with Alizarin Red S was used for initial screening of the isolates for aluminum tolerance and biosorption. Five strains of aluminumion-fixing sulfate-reducing bacteria and a strain designated UFZ B 406 isolated from another source were used in the experiments. The mechanism of aluminum biosorption was found to be a passive one. Freezing and thawing of the cells resulted in higher sorption of aluminum, whereas heat treatment or the uncoupler carbonyl-cyanide-m- chlorophenylhydrazone (CCCP) had no effect. The pH value had significant influence on the aluminum ion adsorption, the most absorbance being at pH 3 and 5, and the lowest at pH 7. Addition of magnesium and the presence of iron sulfide precipitates decreased aluminum sorption. The relationship between biomass and Al3+ ions accumulated was linear. Polyphosphate granules as possible site of aluminum accumulation were not found to be present. Fluorescence microscopy showed deposition of aluminum ions exclusively on the surface of the cell. Use of the isolates in bioremediation processes for removing aluminum from water is considered.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.