233
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Thermoelastic vibration analysis of functionally graded skew plate using nonlinear finite element method

&
Pages 1111-1133 | Received 12 Dec 2016, Accepted 31 Jan 2017, Published online: 08 Mar 2017
 

ABSTRACT

Numerical investigation of nonlinear free vibration of functionally graded skew (FGS) plate in the thermal environment is presented. The mathematical model is proposed for the first time based on higher order shear deformation theory in conjunction with Green–Lagrange-type geometric nonlinearity for the FGS plate subjected to a thermal load. The material properties are considered to be temperature dependent and are graded along the thickness direction as per simple power law of distribution in terms of volume fraction of the constituent phase. The governing algebraic equations are derived using Hamilton’s principle, and the solutions are obtained using the direct iterative method. The proposed finite element model has discretized into an eight-noded quadratic serendipity elements. To validate the model, the obtained results are compared with the available literature. The influence of volume fraction index, skew angle, temperature change, aspect ratio, side–thickness ratio, and boundary conditions on the linear and nonlinear frequency of skew functionally graded material plate is examined and discussed in detail.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.