215
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Generalized differential quadrature nonlinear buckling analysis of smart SMA/FG laminated beam resting on nonlinear elastic medium under thermal loading

, , &
Pages 583-607 | Received 08 Oct 2017, Accepted 18 Nov 2017, Published online: 19 Jan 2018
 

ABSTRACT

The nonlinear thermal buckling analysis of functionally graded (FG) beam integrated with shape memory alloy (SMA) layer(s), with different lay-up configurations and supported on a nonlinear elastic foundation, has been investigated. The FG layer is graded through the beam thickness direction and thermomechanical properties are assumed to be temperature dependent. The Brinson one-dimensional constitutive law are used to model the characteristics of SMA. The von Kármán strain–displacement fields with the Timoshenko beam theory are applied to the Hamilton’s principle to derive the set of nonlinear equilibrium equations. Generalized differential quadrature method along with direct iterative scheme is utilized to discretize and solve the nonlinear equilibrium equations. The accuracy of proposed model is compared and validated with previous research in literature. The detailed parametric study has been performed to investigate the influence of geometrical, material, and some other key parameters on the nonlinear thermal buckling solutions. The results show that selecting the proper lay-up is of great importance because the type of SMA/FG lay-up can considerably affect the nonlinear buckling solutions. Moreover, adequate application of SMA layers in a proper lay-up configuration significantly postpones the thermal buckling temperature of the beam.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.