233
Views
11
CrossRef citations to date
0
Altmetric
Research Article

Thermal stress and magnetic effects on nonlinear vibration of nanobeams embedded in nonlinear elastic medium

ORCID Icon, , &
Pages 1316-1332 | Received 07 Feb 2020, Accepted 24 May 2020, Published online: 30 Jun 2020
 

Abstract

Nonlinear vibration of nanobeams embedded in the linear and nonlinear elastic materials under magnetic and temperature effects is investigated in this study. Von Karman’s strain–displacement relation is applied to a nonlocal Euler–Bernoulli beam model. Equation of motion is derived using Hamilton’s principle. Galerkin’s method is applied to decompose the nonlinear partial differential equation into a nonlinear ordinary differential equation (NODE). The NODE is solved using He’s method. The nanobeams are embedded in the Winkler, Pasternak, and nonlinear elastic media. The effects of low and high temperatures, nonlocal parameter, magnetic force, amplitude, and linear and nonlinear elastic materials are examined.

Acknowledgments

The authors are grateful to the University of Salahaddin-Erbil and Iran University of Science and Technology for supporting this work.

Disclosure statement

The authors declare that they have no competing interests.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.