215
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Optimization of a Reverse Osmosis System Using Genetic Algorithm

&
Pages 647-663 | Received 02 May 2005, Accepted 05 Dec 2005, Published online: 15 Feb 2007
 

Abstract

Reverse Osmosis (RO) has found extensive application in industry as a highly efficient separation process. In most cases, it is required to select the optimum set of operating variables such that the performance of the system is maximized. In this work, an attempt has been made to optimize the performance of RO system with a cellulose acetate membrane to separate NaCl‐Water system using Genetic Algorithm (GA). The GAs are faster and more efficient than conventional gradient based optimization techniques. The optimization problem was to maximize the observed rejection of the solute by varying the feed flowrate and overall permeate flux across the membrane for a constant feed concentration. To model the system, a well‐established transport model for RO system, the Spiegler‐Kedem model was used. It was found that the GA converged rapidly to the optimal solution at the 8th generation. The effect of varying GA parameters like size of population, crossover probability, and mutation probability on the result was also studied. The algorithm converged to the optimum solution set at the 8th generation. It was also seen that varying the computational parameters significantly affected the results.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.