150
Views
21
CrossRef citations to date
0
Altmetric
Original Articles

Removal of Lead Ions from Aqueous Solutions by Different Types of Industrial Waste Materials: Equilibrium and Kinetic Studies

, , &
Pages 1881-1892 | Received 06 Nov 2005, Accepted 13 Feb 2006, Published online: 20 Aug 2006
 

Abstract

A comparative study of the adsorbents prepared from several industrial wastes for the removal of Pb2+ has been carried out. Fertilizer industry waste viz. carbon slurry and steel plant wastes viz. blast furnace (B.F.) slag, dust, and sludge were investigated as low‐cost adsorbents after proper treatment in the present study. The adsorption of Pb2+ on different adsorbents has been found in the order: B.F. sludge>B.F. dust>B.F. slag>carbonaceous adsorbent. The least adsorption of Pb2+ on carbonaceous adsorbent even having high porosity and consequently greater surface area as compared to other three adsorbents, indicates that surface area and porosity are not important factors for Pb2+ removal from aqueous solutions. The adsorption of Pb2+ has been studied as a function of contact time, concentration, and temperature. The adsorption has been found to be exothermic, and the data conform to the Langmuir equation. The kinetic results reveal that the present adsorption system follows Lagergren's first order rate equation. Since all three waste products from the steel industry show higher potential to remove lead from water, therefore, it is suggested that these metallurgical wastes can be fruitfully employed as low‐cost adsorbents for effluent treatment containing toxic metal ions.

Acknowledgement

The authors are thankful to Ministry of Environment and Forests, Government of India for financial support.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.