284
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Breakthrough Data Analysis of Adsorption of Toluene Vapor in a Fixed‐Bed of Granular Activated Carbon

, &
Pages 2221-2233 | Received 27 Nov 2006, Accepted 04 Mar 2007, Published online: 14 Aug 2007
 

Abstract

Toluene vapor was adsorbed in a laboratory‐scale packed‐bed adsorber using granular activated carbon (GAC) at constant pressure (101.3 kPa). The adsorber was operated batchwise with the charge of GAC in the range of 2–4 g to obtain the breakthrough curves of toluene vapor. Experiments were carried out at different adsorption temperatures (25–50°C), sparger temperatures (20–30°C), and the flow rates of nitrogen (80–150 cm3/min) to investigate the effects of these experimental variables on the breakthrough curves. The deactivation model was tested for these curves by combining the adsorption of toluene vapor and the deactivation of adsorbent particles. The observed values of the adsorption rate constant and the deactivation rate constant were evaluated through analysis of the experimental breakthrough data using a nonlinear least squares technique. The experimental breakthrough data were fitted very well to the deactivation model than the adsorption isotherm models in the literature.

Acknowledgements

This work was supported with the Basic Research Program of the Korea Science and Engineering Foundation (KOSEF) through ARC and Brain Korea project.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.