182
Views
27
CrossRef citations to date
0
Altmetric
Original Articles

Fouling Control by Reduction of Submicron Particles in a BF‐MBR with an Integrated Flocculation Zone in the Membrane Reactor

, &
Pages 1871-1883 | Received 02 Sep 2007, Accepted 08 Feb 2008, Published online: 04 Jun 2008
 

Abstract

Submicron particles represent one of the major foulants in the biofilm membrane reactor BF‐MBR. Reduction of the amount of submicron particles (colloids) adjacent to the membrane is one measure in order to provide better fouling control in BF‐MBR systems. A submerged hollow fiber (Zenon Zeeweed) membrane reactor was redesigned by introducing a flocculation zone below the aeration device of the membrane module. This resulted in reduction of submicron particles around the membrane from 8.2% to 6.9%, expressed in differential number percentage. The size of the most abundant particle fraction consequently increased from 0.70 to 0.84 µm. Furthermore, the modified membrane reactor design provided longer operational cycles, >40% reduction of suspended solids around the membrane, and improved retentate/concentrate characteristics, i.e., dewaterability (CST), settleability (SVI/SSV) and filterability (TTF).

Acknowledgment

The authors would like to acknowledge AnoxKaldnes, Norway, for support with the biofilm reactor and ZENON Environmental Inc., Canada, for supplying the membrane modules.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.