275
Views
12
CrossRef citations to date
0
Altmetric
MEMBRANES

Optimization of Preparation Conditions for PDMS-Silica Composite Pervaporation Membranes Using Response Surface Methodology

, &
Pages 2211-2222 | Received 24 Nov 2010, Accepted 02 Jun 2011, Published online: 21 Sep 2011
 

Abstract

In this article, response surface methodology was used to optimize the preparation conditions of fumed silica filled polydimethylsiloxane/cellulose acetate composite membranes. The silica loading, polydimethylsiloxane concentration, and NH2-C3H6-Si(OC2H5)3/silica weight ratio were considered as factors. Two regression equations, which described the effects of the three factors on the permeation flux and selectivity of the membranes, were derived from the results of 20 experiments by using a statistical software Design-Expert 7.1.4. The results revealed that the three factors had important effects on the permeation flux and the selectivity. The obtained regression equations were confirmed with another four groups of experiments. According to the regression equations, for the separation of an ethanol aqueous solution with the concentration of 10 wt%, the maximum selectivity of the membrane, 11.5 could be obtained at the feed temperature of 40°C, and the corresponding permeation flux was 197.3 g · m−2 · h−1. The preparation conditions for making the composite membrane with the above separation performances were: the silica loading was 5.21 wt%, the polydimethylsiloxane concentration was 13.36 wt%, and the NH2-C3H6-Si(OC2H5)3/silica weight ratio was 0.59.

ACKNOWLEDGEMENTS

The authors acknowledge the financial support by the Fundamental Research Funds for the Central Universities of China (DL09DBQ02) and National Natural Science Foundation of China (20906010).

Notes

a w silica/w PDMS × 100.

b w PDMS/(w n-hexane + w PDMS) × 100.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.