342
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Ion-Exchange Characteristics of a Layered Metal Sulfide for Removal of Sr2+ from Aqueous Solutions

, , , , , , , & show all
Pages 896-902 | Received 30 Apr 2011, Accepted 20 Oct 2011, Published online: 18 Apr 2012
 

Abstract

Strontium-90 (90Sr) is the most abundant radionuclide in radioactive wastes, and is typically isolated by treatment with an inorganic ion-exchange material. Most inorganic ion-exchange materials contain oxygen. The ion-exchange chemistry of layered metal sulfides is relatively poorly explored compared with that of oxide ion-exchange materials. Here, a layered metal sulfide (UCR-28), constructed from [ZnGe3S9(H2O)]4− supertetrahedral clusters, was prepared under hydrothermal conditions and used for the removal of Sr2+ ions from aqueous solution. Batch experiments showed that UCR-28 had affinity for Sr2+ ions at pH values ranging from 1 to 10 and the maximum ion-exchange capacity of UCR-28 (50.1 mg/g) was achieved at pH 7. Thermodynamic parameters for the ion-exchange process were evaluated, and the enthalpy and Gibbs free energy results suggested the Sr2+ ion-exchange process was endothermic and spontaneous. The ion-exchange data were a good fit to the Langmuir model. In addition, the metal sulfide reported here had a relatively high thermal stability. The results of this study provide insight into the largely unknown ion-exchange chemistry of metal sulfides, and could be used for design of new chalcogenide frameworks with improved ion-exchange properties.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.